スキップしてメイン コンテンツに移動

#DRE | #3。Ops ...Oops。搶佔先機。

*** BuzzWords。嗡嗡嗡。

*** 數據領域。Data。範圍。AIOps。MLOps。DataOps。
1. AIOps。與如何高效地處理擷取儲存文字相關。(NLP With High-Performance)
  • 有 LLM。Semantic Cache。VectorDB。
2. 商務與使用體驗有三大指標。Hit Ratio。Latency。Recall。
  1. Hit Ratio。This metric quantifies the cache's ability to fulfill content requests successfully, compared to the total number of requests it receives. A higher hit ratio indicates a more effective cache.
  2. Latency。This metric measures the time it takes for a query to be processed and the corresponding data to be retrieved from the cache. Lower latency signifies a more efficient and responsive caching system.
  3. Recall。This metric represents the proportion of queries served by the cache out of the total number of queries that should have been served by the cache. Higher recall percentages indicate that the cache is effectively serving the appropriate content.

3. Cache 有三種方法。SampleCodes 見下。

  1. In-Memory Cache often causes cost increases. 
  2. DB Cache usually data formats mismatch will cause the cache miss. 
  3. Semantic Cache stores prompts and responses, and evaluate hits based on semantic similarity.

*** 後端開發。Development。範圍。DevOps。GitOps。CIOps。

  • 早期 Jenkins。Github。Azure Devops。Docker。
  • 近期 CircleCI。Gitlab。Kubernetes (Helm ft yq ft Kustomize)。
*** 資安協防。SecOps。範圍。SOC。CISO。SASE。SIEM。SOAR。EDR。XDR。
*** 網絡端點。NetOps。範圍。NGFW。SDWAN。SSE。Gateway。Endpoint。DNS。MTTR。
*** 基礎建設。InfraOps。範圍。Above-Mentioned。

 

*** 參考。
[1] GPTCache。Sample Code。https://github.com/zilliztech/GPTCache
[2] Redis。
[3] OpenAI。
[4] LLM。LangChainCaching。Sample Code。[4.1] github.com/langchainai/langchain/blob/v0.0.219/langchain/cache.py


*** Data。AIOps。MLOps。DataOps。

AIOps stands for Artificial Intelligence for IT Operations. It involves the application of AI and machine learning techniques to enhance IT operations, including monitoring, event correlation, and automation, to improve efficiency and performance.
  • Large Language Models, Redis Semantic Cache, and Vector Databases are interconnected in the realm of natural language processing applications, where efficient data storage, retrieval, and processing are essential for achieving high-performance results. 
  • Redis Semantic Cache can optimize the performance of both LLMs and Vector Databases by caching frequently accessed data or intermediate results, while Vector Databases provide a scalable and efficient storage solution for vector data used by LLMs in NLP tasks.
MLOps is a set of practices that combine machine learning (ML) development with DevOps principles to streamline the process of deploying, managing, and monitoring ML models in production environments.
  • Algorithm Visualization refers to the graphical representation of algorithms to aid in understanding their behavior and performance. It helps developers and data scientists analyze and optimize algorithms.
DataOps is a methodology that combines principles from DevOps to improve the speed and quality of data analytics. It focuses on collaboration, automation, and integration of data processes across the data lifecycle.

*** Redis Semantic Cache

Cost Reduce & APP Throughput Increase

Real-Time Results Using Vector Search in Redis Enterprise
Real-Time Results Using Vector Search
in Redis Enterprise

Vector Databases, Embeddings, Indexing,
Distance Metrics, and Large Language Models

  • Vector databases are specialized systems that efficiently store and retrieve dense numerical vectors, designed for tasks like image recognition and recommendation systems, using techniques like hierarchical navigable small world (HNSW) and product quantization. 

The vector embedding is stored as a JSON array.
(It shown as: "description_embeddings": [ ,  ,  ,  ...] 

  • Vector Embeddings are numerical representations of unstructured data like audio or images, capturing semantic similarity by mapping objects to points in a vector space where similar objects have close vectors. 
    • Search (where results are ranked by relevance to a query string)
    • Clustering (where text strings are grouped by similarity)
    • Recommendations (where items with related text strings are recommended)
    • Anomaly detection (where outliers with little relatedness are identified)
    • Diversity measurement (where similarity distributions are analyzed)
    • Classification (where text strings are classified by their most similar label)
  • Vector indexing is a method of organizing and retrieving data based on vector representations, replacing traditional tabular or document formats with vectors in a multi-dimensional space.

Redis Enterprise manages vectors in an index data structure to enable intelligent similarity search that balances search speed and search quality. Choose from two popular techniques, FLAT (a brute force approach) and HNSW (a faster, and approximate approach), based on your data and use cases.

  • Distance metrics are mathematical functions determining the similarity or dissimilarity between two vectors, crucial for tasks like classification and clustering, with Redis using three measures for enhanced performance. 

Redis Enterprise uses a distance metric to measure the similarity between two vectors. Choose from three popular metrics – Euclidean, Inner Product, and Cosine Similarity – used to calculate how “close” or “far apart” two vectors are.

  • Large language models (LLMs) are powerful deep-learning models designed for language processing, using large-scale transformer architectures to comprehend and generate text, showcasing impressive capabilities in various applications.

---
title: Redis Semantic Cache
author: Celia
---
# Cache
## Semantic Cache in Redis 7.2

### Pre-install LLM
``` shell
!pip install langchain openai --quiet --upgrade

import os

os.environ['OPENAI_API_KEY'] = 'your openai api key 請用你自己的' 
```

### ChatOpenAI instance
```python
import langchain

from langchain.chat_models import ChatOpenAI

llm = ChatOpenAI()
```

### 1. InMemoryCache
```python
from langchain.cache import InMemoryCache

langchain.llm_cache = InMemoryCache()

```

```python 
# Ask a question and measure how long it takes for LLM to respond.
%%time
llm.predict("What is OpenAI?")

# Output: 
CPU times: user 25 ms, sys: 6.4 ms, total: 31.4 ms
Wall time: 4.54 s

```

#### How InMemoryCache stores data?
```python
class InMemoryCache(BaseCache):
 """Cache that stores things in memory."""
 def __init__(self) -> None:
 """Initialize with empty cache."""
 self._cache: Dict[Tuple[str, str], RETURN_VAL_TYPE] = {}
```

```python 

# First element of the tuple
list(langchain.llm_cache._cache.keys())[0][0]

# Output 1: 
'[{"lc": 1, "type": "constructor", "id": ["langchain", "schema", "HumanMessage"], "kwargs": {"content": "What is OpenAI?"}}]'

```
 
```python 
# Second element of the tuple
list(langchain.llm_cache._cache.keys())[0][1]

# Output2 : 
'{"lc": 1, "type": "constructor", "id": ["langchain", "chat_models", "openai", "ChatOpenAI"], "kwargs": {"openai_api_key": {"lc": 1, "type": "secret", "id": ["OPENAI_API_KEY"]}}}---[(\'stop\', None)]'

```

### 2. FullLLMCache
```python
!rm -f .cache.db

from langchain.cache import SQLiteCache
langchain.llm_cache = SQLiteCache(database_path=".cache.db")

# Output 1: 
CPU times: user 4.25 ms, sys: 980 µs, total: 5.23 ms 
Wall time: 4.97 ms

# Ask the same question twice and measure the performance difference
%%time
llm.predict("What is OpenAI?")
```

```python 
%%time
llm.predict("What is OpenAI?")

# Output 2: 
CPU times: user 39.3 ms, sys: 9.16 ms, total: 48.5 ms 
Wall time: 4.84 s

```

```python 
# Add some space in the sentence and ask again
%%time
llm.predict("What is  OpenAI?")

# Output 3: 
The extra spaces cause the cache miss.

```

#### How FullLLMCache stores data?
```python 
class FullLLMCache(Base):  
 """SQLite table for full LLM Cache (all generations)."""
    __tablename__ = "full_llm_cache"
    prompt = Column(String, primary_key=True)
    llm = Column(String, primary_key=True)
    idx = Column(Integer, primary_key=True)
    response = Column(String)

class SQLAlchemyCache(BaseCache):
 """Cache that uses SQAlchemy as a backend."""
 def __init__(self, engine: Engine, cache_schema: Type[FullLLMCache] = FullLLMCache):
 """Initialize by creating all tables."""
 self.engine = engine
 self.cache_schema = cache_schema
 self.cache_schema.metadata.create_all(self.engine)
```

```python

with engine.connect() as connection:
    rs = connection.exec_driver_sql('select * from full_llm_cache')
 print(rs.keys())
 for row in rs:
 print(row)

# Output: 
RMKeyView(['prompt', 'llm', 'idx', 'response'])
('[{"lc": 1, "type": "constructor", "id": ["langchain", "schema", "HumanMessage"], "kwargs": {"content": "What is OpenAI?"}}]', '{"lc": 1, "type": "constructor", "id": ["langchain", "chat_models", "openai", "ChatOpenAI"], "kwargs": {"openai_api_key": {"lc": 1, "type": "secret", "id": ["OPENAI_API_KEY"]}}}---[(\'stop\', None)]', 0, '{"lc": 1, "type": "constructor", "id": ["langchain", "schema", "ChatGeneration"], "kwargs": {"message": {"lc": 1, "type": "constructor", "id": ["lang ... (588 characters truncated) ... AI models and systems, such as the language model GPT-3, to showcase the capabilities and potential applications of AI.", "additional_kwargs": {}}}}}')
('[{"lc": 1, "type": "constructor", "id": ["langchain", "schema", "HumanMessage"], "kwargs": {"content": "What is  OpenAI?"}}]', '{"lc": 1, "type": "constructor", "id": ["langchain", "chat_models", "openai", "ChatOpenAI"], "kwargs": {"openai_api_key": {"lc": 1, "type": "secret", "id": ["OPENAI_API_KEY"]}}}---[(\'stop\', None)]', 0, '{"lc": 1, "type": "constructor", "id": ["langchain", "schema", "ChatGeneration"], "kwargs": {"message": {"lc": 1, "type": "constructor", "id": ["lang ... (594 characters truncated) ...  maintains various open-source AI tools and frameworks to facilitate the development and deployment of AI applications.", "additional_kwargs": {}}}}}')

```


### 3. SemanticCache

```python
!pip install langchain openai --quiet --upgrade

import os
os.environ['OPENAI_API_KEY'] = 'your openai api key'
# https://platform.openai.com/api-keys

```

```python
!curl -fsSL https://packages.redis.io/redis-stack/redis-stack-server-6.2.6-v7.focal.x86_64.tar.gz -o redis-stack-server.tar.gz
!tar -xvf redis-stack-server.tar.gz
!pip install redis
!./redis-stack-server-6.2.6-v7/bin/redis-stack-server --daemonize yes
```

```python
import langchain
from langchain.llms import OpenAI

# To make the caching really obvious, lets use a slower model.
llm = OpenAI(model_name="text-davinci-002", n=2, best_of=2)
```

```python

# Initialize the Redis semantic cache with default score threshold 0.2
from langchain.embeddings import OpenAIEmbeddings
from langchain.cache import RedisSemanticCache

langchain.llm_cache = RedisSemanticCache(redis_url="redis://localhost:6379", embedding=OpenAIEmbeddings(), score_threshold=0.2)

```

```python
%%time
llm("Please translate 'this is Monday' into Chinese")

# Output 1: 
CPU times: user 74.4 ms, sys: 7.11 ms, total: 81.5 ms 
Wall time: 2.19 s 
'\n\n这是周一'
```

```python
%%time
llm("Please translate 'this is Tuesday' into Chinese")

# Output 2: 
Notice that, the query below is 1 word different from the previous one. Cache got same hit. 
CPU times: user 6.35 ms, sys: 0 ns, total: 6.35 ms
Wall time: 211 ms
'\n\n这是周一' 
```

```python

%%time
llm("Tell me a joke")

# Output 3: 
CPU times: user 34.2 ms, sys: 2.85 ms, total: 37 ms 
Wall time: 3.88 s 
'\n\nWhy did the chicken cross the road?\n\nTo get to the other side.'

```

```python

%%time
llm("Tell me 2 jokes")

# Output 4: 
CPU times: user 7.27 ms, sys: 0 ns, total: 7.27 ms
Wall time: 247 ms 
'\n\nWhy did the chicken cross the road?\n\nTo get to the other side.'

```

#### How SemanticCache stores data?
```python
# Redis semantic cache
# Find the keys in the cache

langchain.llm_cache._cache_dict

# Output: {'cache:bf6f6d9ebdf492e28cb8bf4878a4b951': <langchain.vectorstores.redis.Redis at 0x7fed7bd13310>}
```

*** Development

  1. DevOps is a culture, set of practices, and collaboration between development and operations teams aimed at automating and improving the process of software development, testing, and deployment.
  2. GitOps is a methodology for managing infrastructure and applications using Git version control. Changes to the infrastructure or applications are made through pull requests and automatically applied through continuous integration/continuous deployment pipelines.
  3. CIOps, or Continuous Integration Operations, is the practice of integrating operations processes into the continuous integration and continuous deployment (CI/CD) pipeline. It aims to automate and streamline the deployment and management of infrastructure and applications.

  • 早期 Jenkins。Github。Azure Devops。Docker。
  • 近期 CircleCI。Gitlab。Kubernetes (Helm ft yq ft Kustomize)

*** Security

  • SecOps, or Security Operations, is the practice of integrating security into the DevOps process. It involves continuous monitoring, detection, and response to security threats and vulnerabilities.

  1. SOC stands for Security Operations Center, a centralized unit responsible for monitoring and analyzing an organization's security posture, detecting and responding to security incidents, and implementing security measures.
  2. CISO stands for Chief Information Security Officer, a senior executive responsible for overseeing an organization's information security strategy and ensuring compliance with security policies and regulations.
  3. SASE stands for Secure Access Service Edge, a cloud-based architecture that combines network security functions with wide-area networking capabilities to support the dynamic secure access needs of modern enterprises.
  4. SIEM stands for Security Information and Event Management, a technology that provides real-time analysis of security alerts generated by network hardware and applications to identify and respond to security threats.
  5. SOAR stands for Security Orchestration, Automation, and Response, a technology stack that integrates security tools and automates incident response processes to improve the efficiency and effectiveness of security operations.
  6. EDR stands for Endpoint Detection and Response, a security technology that continuously monitors and analyzes endpoint activities to detect and respond to advanced threats and security incidents.
  7. XDR stands for Extended Detection and Response, a security platform that correlates and analyzes data from multiple security products across different security layers to provide comprehensive threat detection and response capabilities.

*** Network 

  • NetOps, or Network Operations, is the practice of managing and maintaining an organization's network infrastructure to ensure its availability, performance, and security.

  1. NGFW stands for Next-Generation Firewall, a network security device that combines traditional firewall capabilities with advanced features such as intrusion prevention, application control, and deep packet inspection.
  2. SDWAN stands for Software-Defined Wide Area Network, a technology that enables the centralized management and dynamic allocation of network resources to optimize the performance and security of wide area networks.
  3. SSE could refer to various things, but in the context of NetOps, it might stand for Server-Sent Events, a technology used for real-time communication between a client and a server over HTTP.
  4. A gateway is a network node that connects two different networks, facilitating communication between them.
  5. An endpoint refers to a computing device connected to a network, such as a desktop computer, laptop, smartphone, or IoT device.
  6. DNS stands for Domain Name System, a decentralized naming system for computers, services, or any resource connected to the Internet or a private network, translating domain names into IP addresses.
  7. MTTR stands for Mean Time to Repair, a metric used to measure the average time it takes to repair a system or component after a failure or incident.

*** Infrasturature

  • InfraOps, or Infrastructure Operations, refers to the management and maintenance of an organization's IT infrastructure, including hardware, software, networks, and data centers.

ロックンロール ウィドウ。


*** 十年數🌲木。百年數🌲人。


このブログの人気の投稿

#VACCINE | #3。サイレント。聽障自救。

嗨。朋友。我很高興妳(你)願意相信我。 前言: 自殺防治專線管道多元。 妳(你)可以關鍵字搜尋。 或參考我所整理的資訊。 先給解法相關資訊如附。 解法: 事物一體兩面。自殺防治專頁。入不了完美者的偏執眼。 自殺防治專線。 預設室內電話。獨居在外者甚少牽專線。 手機支援甚少。 全程音質甚差。 完全不懂對方說話內容。 某某組織團體。我反為渠引導。渠趕著下班沒聽進訴求。 自殺防治網頁。 前端卡頓跑屏。後端資料拋轉頻仍錯誤。 函件輔導通訊。相隔層層面紗。 傷口屢次被迫公開揭露。 國民資訊安全。政府慈善團體。個資隱私保存心存疑慮。 我是個積極樂觀的人故從小早已求助身心科。 鑑於身心科開出藥劑卻讓我狂嗜睡影響工作。 進而轉向身心靈玄學及佛道天主基督等宗教。 即使非本科證照加身但涉獵廣同時重視實踐。 上述管道屢未能助我脫離自殺意念深縛我心。 生命最後一刻。向相關單位投訴並依序核備案件。 不由自主想著。如何用開源軟體使 加速頁面緩存。 同時也思考著。如何讓聽障人士有 高音質的語音 。 後來又思索著。如何讓心理諮商師 瞭解聽障所需 。 站在二十幾層的頂樓。吹著夜風仰看滿天星星。 最後一刻。突然察覺。我的數據夢還沒實踐呢。 譸張為幻 。人言可畏。我要活著完成未完的夢。 我喜歡數據領域。我喜歡開源軟體。我喜歡解決問題。 我的夢想。拯救了自己。 生命輪轉。請保持初衷。 勿讓他人。踐踏著妳(你)。 假使妳(你)與我一樣身為聽障人士。 求助上述渠道多次卻屢次未獲改善。 希冀本篇專文能夠提供實質地幫助。 提醒: 我不是專業心理諮商師。 我不是專業家庭調解者。 我只是凡夫俗子普通人。 週一到週五白天要賺錢。 週六上午固定 阿斯坦加 。 週日全天是我唯一空閒。 若妳(你)需要一些建議。 妳(你)可以直接 PM 我 。 請妳(你)留下文字給我。 請妳(你)容許遲些回覆。 在此期間。建議如下。 請好好睡覺。 請好好聽歌 。 請放空身心 。 請敞開大笑 。 請多元涉獵 。 請珍惜自己 。 最後。 請相信。 妳(你)是珍貴的。 被迫沈默 。 美・サイレント | 山口百恵 翻譯請見  kimonobeat *** 參考。 [1]  自殺防治通報 Suicide Prevention System 。 1925|衛福部 (手機可直撥) 。 [2]  1995|生命線 (手機可直撥) [3]  1980|張老師

Euphoria。教學相長。

***  真。 Human Being。 Being Human。 如何當好人類。 而非原始動物。 人類擁有真心。 動物只有本能。 *** Gay。 喜悅 。 才情。逐步實踐累積經驗 。 混音。電子合成節奏科幻。 音樂 。 撫慰人心最佳良藥。 *** 初心。 單耳聽損。 本站文章期間2024年3月17日至 2024年4月8日止。 原本。開設本站用意。單純分享自殺求助的經驗。 此間。痛失摯親離去。有感而發 衍生雜感的回憶。 同時。赴醫舊疾復發。肺血狀況差觸及近年病痛。 綜上。想放空想重生。月光仙子得找回自己原力。 願原力同在May The Force Be With You。Peace。 *** 阿斯 3️⃣ 重奏。 #Ashtanga | #1。Heart Wants What It Wants。心之所向。 ashtanga-1-heart-wants-what-it-wants #Ashtanga | #2。Baby, Train UR Body。自律練習。 ashtanga-2-baby-train-ur-body #Ashtanga | #3。Gecko。自癒。 ashtanga-3-gecko-self-healing *** 8️⃣ 罹剩母怨。 #VACCINE | #1。Hi。朋友。 vaccine-1-Son-Preference-Gender-Discrimination-Causes-Inequality #VACCINE | #2。VACCINE INJURY。疫苗救濟。 vaccine-2-injury-causes-hearing-loss-Immune-system-disorders-heart-failure-i-gonna-die #VACCINE | #3。サイレント。聽障自救。 vaccine-3-hearing-loss #VACCINE | #4。MJ。給我乖。 vaccine-4-mj-family-violence #VACCINE | #5。Quizás。貝多芬。 vaccine-5-quizas-loewe-me-gusta #VACCINE | #6。LoveU3000。涓流不息。 vaccine-6-loveu3000-for-nanny #VACCINE | #7。L’escalier。迴旋梯。 vaccine-

#VACCINE | #2。VACCINE INJURY。疫苗救濟。

*** 5/17 更新。 法廣  https://www.rfi.fr/tw/20240502-遭控淡化新冠疫苗副作用-astrazeneca面臨集體訴訟 感謝 Sarah Moore。Partner。Leading international and product safety lawyer。Leigh Day。 https://www.leighday.co.uk/about-us/our-people/partners/sarah-moore/ #17。HEARTFAILURE。心碎真相。 what-hurts-us-is-what-heals-us *** 3/18 更新。 我直接放棄訴願。我不再自尋煩惱。 我會發一篇專文。 聽障如何自殺求助 。 *** 參考。 [1] 聽障如何自殺求助。 請見 #VACCINE | #3。サイレント。聽障自救。 vaccine-3-hearing-loss [2]  中庸 vs 平庸。 我本性過於美好與良善。 偽中庸 平庸 士趁虛而入。 無所作為的假意伸援手。 請見  #VACCINE | #7。L’escalier。迴旋梯。 vaccine-7-lescalier-follow-ur-heart-drop-ur-mind [3]  Shurangama Mantra Heart Mantra 。 Why is 108 Viewed As Holy。 請見 #12。出発する。超快感。 shuppatsu-suru-honey-r-u-coming [4] National Academy for Educational Research。Ministry of Education。 https://dict.revised.moe.edu.tw/ 。 [5]  Tsûn kuè tsuí bô hûn 。 https://sutian.moe.edu.tw/zh-hant/su/27121/ 。 打從三年前。我下定決心伸手向外界組織團體求助。 我早已 (1) 羅列相關 疫苗致聽損亦使憂鬱惡化等病況。(Issues) 其中亦 (2) 列出我希望從組織團體 獲得何種形式幫助。(Solutions) 到最終 (3) 我應有如何心態去 期盼『合理』的痊癒等。(Alternatives) 以上病歷、簡述以及醫院 X 光片等檔案紙本

#VACCINE | #1。Hi。朋友。

我不傻等。 Hi。我是 Celia。我想分享一件事。今二月底。一張A5紅單行政訴訟書。  恣意飄揚在大門上。不祥預兆浮起。好意貼單但其上文字卻令人不踏實。  前往郵局邊走邊想是否有漏繳稅務。接到破爛信封著實令我摸不著頭緒。  為何政府把公文封設計成易破不堪。實際上根本無法達到保密文書之效。  一見疫苗二字。再見無關等語。心已無期待。  天性樂於付出。厭惡心機算計。心已無得失。  即使人生坎坷。身心璀殘萬次。我信人本善。  三年之間生死交集自殺倖存。 當妳渴望別人對妳伸出援手。  通常得來的都是索取的黑洞。 無限往復反覆循環彷如輪迴。   僱主疑惑頻轉工。檯面上沒說的是。每一次都是我自毀又重生的時刻。  每一次轉換。我就得撕下我的皮膚。流出我的鮮血。換來一次的新生。  這照應我三年與後遺症共存的場景。  沒人相信。全身皮膚會莫名剝離。  沒人相信。手腳指甲剩一層薄膜。  沒人相信。每一口呼吸都是疼痛。  沒人相信。現實與虛幻暗夜上演。  沒人相信。經歷這些。我。活著。  我。真的累了。我想做令我快樂的事。  我。喜歡開心。喜歡學習。喜歡自在。  我。善惡二元。我保持懷疑但我尊敬。  我。相信多元。我保持開放但我真心。  縱然全身傷痕累累。我不難過了。  給那些傷害我的人。我要往前進。  我知道我很不一樣。我很有天賦。  *** 中華民國113年2月20日(113)國醫生技字1130220082號函  臺端申請預防接種受害救濟一案,經審定不符合預防接種受害救濟之給付要件,請查照。 依臺端111年3月23日填具之申請書辦理 (臺北市政府衛生局111年4月15日北市衛疾字第1113026061號函檢送)。 個案於110年9月8日接種Covid-19疫苗,依其申請書所載疑似受害情形,經地方主管機關調查,並調閱就醫並立即相關證明資料後,由預防接種受害救濟審議小組進行鑑定並送審議。 本案經審議,依據病歷資料記載、臨床表現、相關檢驗結果及現有醫學實證等研判,個案經診斷為突發性聽力損失,目前醫學實證顯示接種Covid-19疫苗與突發性聽力損失並不具關聯性,其症狀與Covid-19疫苗無關,....臺端對審定結果如有不服,請依訴願法第14條及第58條規定,自本文到達次日起30日內,繕具訴願書逕送衛生福利部,函轉行政院提起訴願。  副本:行政院、衛生福利部、臺北市政府衛生局、國家生技醫療

#VACCINE | #8。Mixed。我的愛。

新家人 可愛混血兒 。 不破不立 破而後立。 知者樂水仁者樂山 。 MyLovelySoulMate 。 *** 放下 (月光仙子要就寢擇日補齊。) Tout, il faudrait tout oublier 。 Pour y croire, il faudrait tout oublier。 On joue, mais là, j'ai trop joué。 Ce bonheur, si je le veux, je l'aurai。 忘掉過往向前邁進。 拾起自己放掉過往。 過度付出傷了自我。 妳的真愛隨之到來。 *** 參考。 [1]  Tout Oublier。Angèle feat. Roméo Elvis。 https://www.youtube.com/watch?v=Fy1xQSiLx8U&t=126s [2] What Is TrueLove。 SelfLove Is TrueLove 。 萬物皆空。如同孩童。 自愛滿盈。此謂真愛。 [2.1] Self-Love Is True Love。Lurdes de Oliveira。March15 2021。 https://www.amazon.com/Self-Love-True-Love-Lurdes-Oliveira/dp/B08YQR6FSM True Love is unconditional love。無條件。 To be loved and accepted for who we are。接收給予。無所期待。 Don’t need to look outside of ourselves。不外求。 Need to look within。向內看。 [2.2] #17。HEARTFAILURE。心碎真相。 https://celiaisangel.blogspot.com/2024/05/17-what-hurts-us-is-what-heals-us.html [2.3] #5。Love Out Of Nothing At All。真愛。 https://celiaisangel.blogspot.com/2024/04/5-love-out-of-nothing-at-all.html [2.4]  #。加油囉。 https://celiaisangel.bl

#Ashtanga | #1。Heart Wants What It Wants。心之所向。

*** 七宗罪。八肢瑜珈。 中文翻譯。請見 Daniel 老師譯本 。 英文翻譯。請見 Philippa Asher 。 月光仙子發現許多人知其名卻不知其意。 一味模仿依樣畫葫蘆卻無法落實在生活。 所以我特地來翻譯翻譯大白話真實意義。 *** 八肢 The eight limbs of yoga are  yama (abstinences),  niyama (observances),  asana (yoga postures),  pranayama (breath control),  pratyahara (withdrawal of the senses),  dharana (concentration),  dhyana (meditation) and  samadhi (absorption). 摘自  ashtangaphilippa *** 第一戒  Yama 自我約束。 例如: 飯吃八分飽。 每天要洗澡。 晚上11點就寢。 早上六點起床。 Ahimsa 不能暴力。例如:不強迫他人。不情緒勒索。不語言暴力。不肢體衝突。 Satya 不說謊。例如: 不 故意大話。 不 指使他人。 Asteya 不偷竊。例如:不拾人牙慧。不任意剽竊。 Brahmacharya 不過度享受。例如:飯不過飽。酒不貪杯。勞逸結合。 Aparigraha 不執著。例如:不對煙/酒精/毒品/熬夜上癮。 *** 第二戒 Niyama 保持精進。 Saucha 身體乾淨。刷牙。洗臉。洗澡。 滌心 。 Santosha 懂得感恩。 Tapas 懂得自律。 Swadhyaya 自我要求。 Ishvarapranidhana 尊重萬物。 包括 水空氣。無私的。最珍貴 。請珍惜。 *** 第三戒 Asana 體位法  請見  #Ashtanga | #2。Baby, Train UR Body。自律練習 。 *** 第四戒 Pranayama 掌握呼吸 mula bandha 根鎖。 Uddyana bandha 臍鎖。 Jalanhara Bandha 喉鎖。 中文翻譯。請見  Daniel 老師譯本 。 英文翻譯。請見  Philippa Asher 。 中英書籍。請參 Jacob 老師推薦  Light on PRĀNĀYĀMA:The Yogic

#Life | #2。Food Art。柔軟容器。

*** 一起許願。 JIIMAMII DOFU 。PEANUT TOFU。 來自日本。 落花生 製。可鹹可甜。夏至將近。好想吃唷。 *** 3/24  饕 一詞。 我非老饕貪求 盛饌 。 樂於 平凡 找出 非凡 。 柔軟容器 尋常 有愛。 Soft Container 。Food Connects People and Us more than Art。 Female Artist who Uses Food as a Medium of the Art Practice。 美食藝術實踐。 柔軟容器。吳庭嫻 。既視感。每一口。愛滿載。 謝謝 庭嫻 &榕志。我怪表情太多哈。 Vegan。提拉米蘇 。純素無麩。醣友友善。 香蕉肉桂鷹嘴豆 。純素無麩。醣友友善。 JIIMAMII DOFU 圖自  fooby ***生活 惢 4️⃣ 。 #Life | #1。Money。精財資。 life-1-corps-never-profitable-enough-people-never-consume-enough #Life | #2。Food Art。柔軟容器。 life-2-food-art-soft-container #Life | #3。No Pain No Gain。思則有備。 life-3-no-pain-no-gain-doing-better-than-u-think #Life | #4。No Sé。感覺來了。 life-4-no-se-baby-talk-ha

#Life | #1。Money。精財資。

乖孩子。 來來來。學點餵飽肚子的東西。 簡要白話: 何謂『理財』?大白話,節省金流。Money Management。 何謂『精算』?大白話,財富模式。Actuarial。 何謂『投資』?大白話,被動收入。Investment。 三大執行流程: 理財(節流) ➢ 精算(模式) ➢ 投資(開源) 此為整體面向。 五步 執行 流程:(步驟面) Record ➢ Review ➢ Revise ➢ Recall ➢ Redue  此為上述細分之細節步驟。例如: 理財階段: 現金流水記帳。 請拿起 筆 。 記錄資金流動來源去向。每日。Record 分類分錄核帳。逐條檢視。每筆記錄是必要維生項。每週。Review 自我審查調帳。嚴格審查。戴上公正第三方的帽子。每月。Revise。 提列備抵呆帳。找出根源。找出留不住金錢的元兇。每季。Recall。 奢靡預算縮編。 徹底執行。保有生活愉悅是必要的。 半年。Redue。 毋須視錢如糞土。 毋須成 小氣財神 。 精算階段: 重複以上步驟。 投資階段: 重複以上步驟。 實施步驟: 第一步驟『理財』:從既有消費習慣來『節省金流』。 原理。 環保意識。EcoGreen。 原理請見。 永續存錢 。 投入時間。每日75%。 基本產出。 基本存款。Saving。 緊急預備 。Reserve。 第二步驟『精算』:從上述找出適合的『財富模式』。 固定模式。Pattern。 投入時間。每日20%。 進階產出。(TBD) 第三步驟『投資』:係為可預期的報酬『開拓財源』。 預期損益。Pocket。 投入時間。每日 5%。 高階產出。(TBD) 應有心態。請平常心。 學習資源: [1]  會計研發基金會 。 [2]  會計研發基金會。重要會計用語 。 [3]  金剛經。賺錢是最深刻的修行 。 [4] 吳聰敏。台灣經濟400年。 https://youtu.be/IpTorUOp-oU 。 [5] 石惠貞。臺港創新論壇。 https://youtu.be/GjcJc3Uc4Fs 。 [6] 聖嚴。 Mindful Economics and the Countdown to 2030 。 [7] Charles Dickens。Luke's。 https://www.youtube.com/watch?v=noCJuWNIz9k&t=690s

#Life | #3。No Pain No Gain。思則有備。

TRX Circuit。練起來。 練心肺。 TRX Pike。 肌肉很痠但值得。 *** 思則有備 星雲 云曰未雨綢繆。 摘自左傳襄公十一。 居安思危有備無患。 ***生活 惢 4️⃣ 。 #Life | #1。Money。精財資。 life-1-corps-never-profitable-enough-people-never-consume-enough #Life | #2。Food Art。柔軟容器。 life-2-food-art-soft-container #Life | #3。No Pain No Gain。思則有備。 life-3-no-pain-no-gain-doing-better-than-u-think #Life | #4。No Sé。感覺來了。 life-4-no-se-baby-talk-ha